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CHAPTER 1

INTRODUCTION

Although the history of algebra dates back almost three thousand years, much of
modern algebra grew out of a desire to solve many number theoretical questions posed as
recently as the sixteenth and seventeenth centuries. Many of these questions, including
Fermat’s Last Theorem, fascinated mathematicians such as Kummer and Dedekind,
prompting them to formalize modern algebra by defining and studying the classic
algebraic constructs. Dedekind, for example, developed the notion of an ideal to
generalize the ideal numbers Kummer investigated. Commutative ring theorists in turn
developed the ideal class group to measure the distance between a Dedekind domain and
a principal ideal domain. In this thesis, we are particularly interested in studying yet a
further generalization of the ideal class group--the Picard group.

To further connect this paper to the work of number theorists, we also consider
the incidence algebra, which Rota introduced to generalize the M&bius inversion formula.
We combine the study of these two classical constructs from number theory, and we
completely investigate the Picard group of an incidence algebra of a finite preordered set
over a field. In the process, we are able to formulate a structure theorem for the

automorphism group of such an algebra and to solve a question pertaining to invariance



under Morita equivalence. With that said, the remainder of this chapter is dedicated to
making the statements of these problems and the associated terminology specific.
Throughout this thesis, we assume all rings are unital. We write group and ring
homomorphisms on the right and module homomorphisms opposite the scalars. Recall
that a reflexive and transitive binary relation is a preorder. If it is also antisymmetric,

then it is a partial order. We let K be a field and P = (V(P),p(P)) be an arbitrary finite
preordered set with vertex set V =V (P) and relation set p(P). We employ the notation
(i,j) € p(P) tomean i, j €V and i < j with respect to the ordering on P.

Letting p(P) = {(i, NI, /). (j,i) € p(P)}, we define an equivalence relation ~ on
Vvia i~ j if and only if (i, j) € p(P). Let [i] denote the equivalence class of i for each
i€V, andlet V be a set of class representatives. Set p(P) = [V xV1n p(P). Itis easy
to verify that P= v, P(P)) is a poset which we call the underlying poset of P. By
convention, V(P) =V and p(P)=p(P).

The incidence algebra I(P) of P over K is the algebra of all functions from the set
of pairs (i, j) € p(P) into K with addition given pointwise and multiplication given by

fe(i, )= 2 f(,k)g(k,j). The structure matrix ring M(P) of P over K is the subring

i<k<j
of the | V| x| V| matrix ring over K such that M € M(P) if and only if M,-,j =0
provided (i, j) € p(P). Since I(P) is ring isomorphic to M(P) as in [21, Proposition
1.2.4], we henceforth associate S = I(P) with M(P). That is, we represent an element in

S by the corresponding element in the structure matrix ring.
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Thére is ample interest in understanding the structure of Aut(S), the multiplicati?e
group of automorphisms of S, with special attention given to the subgroup of

automorphisms of § which fix K as viewed inside S, which we denote by Aut(S). See

[4], [6], [7], [10], [15], [20], and [22]. We therefore state our first problem as follows:
Problem A. Represent Auf(S) as a semidirect product of several subgroups.

In [6], Coelho was able to represent Aut (S) as the semidirect product of three
particular subgroups. In Chapter III, we extend this representation to one for Aut(S) as a
semidirect product of four subgroups.

The outer automorphism group of S is defined to be the factor group
Out(S) = Aut(S) / Inn(S) where Inn(S) is the normal subgroup of Aut(S) formed by
the inner automorphisms of S. The decomposition of Aut(S) arising from Problem A

and the strong connection it allows us to demonstrate between Out(S) and Out(S),

where § is the basic ring of S, become the primary tools we use to solve the remainder of
the problems posed in this papér.

The Picard group Pic(S) of aring S is the set of invertible S-bimodule
isomorphism classes with the group operation being the tensor product, which we denote
by ®. The Picard group is of particular interest since it is a special subset of the
projective right (and left) S-modules, which are instrumental in the study of module
decomposition.

For ¢ € Aut(S), we define ,§ = S as a set and as a right S-module. We define

left multiplication by elements of S via s* x = (s)? x for x€ySandse S. By[8], ,S is.
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an invertible S-bimodule with inverse i S and therefore represents an element in Pic(S).

However, not every element of Pic(S) is necessarily of the form [ ¢S] for some

¢ € Aut(S). This leads to the statement of

Problem B. For [ X] € Pic(S), determine the structure of X in terms of

automorphisms of § and automorphisms of the underlying poset of P.

which we discuss in Chapter V. Specifically, we give a construction in Definition 5.5

generalizing the 4§ construction.

The mathematical literature demonstrates interest in knowing which ring
properties are invariant under Morita equivalence. For example, the property of being
artinian is a Morita invariant and is possessed by incidence rings. However, the group of
outer automorphisms of an incidence ring is not an invariant. For example, § = Q xQ is
Morita equivalent to § = M,(Q) xQ since it is the basic ring for S. However, given the
machinery of Problem A, the reader may verify that Out(S) =12 Z,= Out(S). This

motivates the statement of

Problem C. Determine necessary and sufficient conditions so that Out(S) is

naturally invariant for the Morita equivalence class of S (relative to the collection

of incidence K-algebras).

We provide the solution and the details of “natural invariance” in Chapter V.



CHAPTER 11
PRELIMINARIES

Throughout this chapter, let R and R’ be rings. Recall that Pic(R) is the group

formed by the set of invertible R-bimodule isomorphism classes under the tensor product.

Also recall that for ¢ € Aut(R) , we have the invertible R-bimodule o R, where left

multiplication by elements of R is defined via r * x = (r)?x for x €, Randre R.
The facts and results presented in this chapter will lay the foundation for the work

in subsequent chapters. Specifically, for an incidence ring S with basic ring eSe, we

construct a commutative diagram

Out(S) —— Pic(S)
J l

Out(eSe) ——> Pic(eSe)
in Theorem 2.10 which we use in Chapters IV and V to explore the connection between

Out(S) and Out(eSe) and to ultimately solve Problems B and C.

Definition. We say that , M is a progenerator for the category R —mod if M is
a finitely-generated, left R-module such that R is isomorphic to a direct summand of

M™ as left R-modules for some integer n. Consequently, M generates R-mod, the

category of left R-modules.



Let M be an (R,R’)-bimodule. Asin [8], we say p M is invertible if , M isa

progenerator for R—mod and End(x M) = R’ asrings. Equivalently, My is
invertible if there exists an (R’, R)-bimodule N and bimodule isomorphisms

0:M ®p N — R and 7: N ®; M — R’ making the diagrams

MONQOM-—LBM sRe M NOMRON—-BN sR'QN
L1m®r #  and JIn®8 JH
M® R —* s M N®R —~L 5 N

commute where the y are the standard multiplication map isomorphisms.
We now work toward establishing a connection between Aut(R) and Pic(R).

Lemma 2.1. Let ¢ € Aut(R).

(i) yR=gR as left R-modules.

(i) yR= R«’_1 as R-bimodules.

(iii) o R® R=, R as R-bimodules for all 7€ Aut(R).

(iv) The map ¢ [,R] is a group homomorphism from Aut(R) — Pic(R) with
kernel Inn(R). Consequently, Inn(R) is a normal subgroup of Aut(R), and oR=R asR-

bimodules if and only if ¢ € Inn(R).

Proof. We have the abelian group isomorphism ¢: R—4R viar— (r)?. Forr, s

€R, r)® =) =r* ()?, so ¢ is a left R-module isomorphism showing (i). The
remaining statements are straightforward adaptations of [8, Proposition 55.10 and

Theorem 55.11], given that we are writing our maps on the right instead of on the left.



Notation 2.2. Recall that Out(R) = Aut(R) / Inn(R). By the First Isomorphism
Theorem for groups and Lemma 2.1, there is a monomorphism A:OQut(R) — Pic(R) such

that Inn(R)¢ - [, R]. We can therefore identify Out(R) as a subgroup of Pic(R) via A.

When R is an incidence ring of a preordered set P over a field K, we use A4, to denote A.

We observe that for an invertible R-bimodule X, R= End(zX) asrings via

r - p, where (x)?r = xr for all x e X. We use this to prove the subsequent lemma

which states a necessary and sufficient condition for [X] € Pic(R) to be in the image of

A:Out(R) = Pic(R).

Lemma 2.3. X is an invertible R-bimodule such that either X = g Ror
X g = Ry, if and only if there exists ¢ € Aut(R) such that X=,R as R-bimodules.

Proof. We include a proof here even though this is really just [8, Theorem

55.12].

(¢<): This holds by Lemma 2.1.

¥
(=): We suppose that z X=, R. By the above observation, there is a ring

isomorphism p*:R — End(zX) defined via r pX where (x)”'x =xr forallxe X.

We also have the ring isomorphism p: R — End(zR) defined via r > p, where

(8)Pr = sr forall se R. Itis easy to verify that o: End(4R) — End(,X) where

pa
(f)* ="¥f¥~" for f € End(xR) is a ring isomorphism. Notice that R = End(zX). It



P
is clear that for each r €R, ¥~ pX¥ € End(4R). Since R=End(zR), then
YlpX¥ = p,. for some unique r'eR. Since § = p*a~'p™! is the composition of ring

-1 ~1 -1
isomorphisms, then 8 € Aut(R). Furthermore, r® = (pX)* 7 = P 'pX¥)? " implies

that p o = r®y =¥ 'pXy.

¥
To show X =R, as R-bimodules, we only need to show that ¥is a right R-

module homomorphism from X into R,. However, this holds since for re R and x€ X,

- ¥
¥ = @Y =P P = ()70 = (0)¥r® = (x)* *r. By Lemma 2.1,

X Ee‘lR . The proof is similar if we have X = R,.

Definition. Following [2], a ring R is local if its only idempotents are 0 and 1. A
set of idempotents in a ring is said to be orthogonal if the idempotents comprising the set
are pairwise orthogonal. A ring R is called semiperfect if it contains a complete set
{e1,€,,...,e,} of orthogonal idempotents such that for each i, ¢;Re; is a local ring. A
non-zero idempotent in a ring R is primitive if it cannot be written as the sum of two
non-zero idempotents in R. An R-module is primitive if it is of the form Re for some
primitive idempotent e in R. A set {e,,e,,...,e,} < R of primitive, orthogonal
idempotents is called basic if Re;,Re,,..., Re, is a complete irredundant list of
representatives of the primitive left R-modules. An idempotent of a semiperfect riﬁg Ris

basic if it the sum of a basic set of idempotents of R. A ring is a basic ring for R if it is

isomorphic to eRe for some basic idempotent e in R.



Remark. Per [2], for a semiperfect ring R we can actually find a complete set of

primitive, orthogonal idempotents such that for each i, ¢;Re; is local.

Lemma 2.4. If R is basic semiperfect, then the group monomorphism
A:Out(R) — Pic(R) in Notation 2.2 is an isomorphism.

Proof. Let {e,,...,e,} be a complete, basic set of idempotents of R. Then R
= Re;®.. ®Re, and the Re; are pairwise non-isomorphic, indecomposable submodules of
rR. Let [X]€ Pic(R). Then g X is a progenerator for R-mod and R = End(,X ) . To

show A is surjective, we need to show there exists ¢ € Aut(R) such that sR=X asR-

bimodules. By [2, Theorem 27.11], X = Re,(A‘) @...@Ren(A") for some index sets
Ay,..., A, unique up to cardinality. Since ;X is finitely-generated, then A,,...,A can

be viewed as non-negative integers.

To complete the proof, we show that , X=,R by showing that each A, =1 and
then appeal to Lemma 2.3. Since X is a generator, there is a positive integer k for which
there is an epimorphism X* — R which by projection yields an epimorphism X* — Re;
for each i. Since the above decomposition of X is unique, then each Re, is a direct
summand of X and each A; > 1. We show by contradiction that A, =1 for each i.

Without loss of generality, we assume A, > 1. Since R = End(zX), then End(,X) is

basic semiperfect. Let m= Y |A,| and let {f,,..., f,,} be a set of idempotents of R

1<i<n

defined such that:

fl’fZ""’flAll =€, fIA1I+l""’fIA1l-|-IA2I =€35-5 flAlm+|A,,_1mv--’fm =ée,.
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Since g X = Rel(Al)GB...GBRe,,(A") = @[, Rf,, then writing our maps on the right (opposite
the scalars),
Hom(Rf\,Rf,) Hom(Rf\,Rf;) .. Hom(Rf},Rf,)
End (X)= Hom(R:fz»RfI)

Hom(Rf,,Rf;) Hom(Rf,,Rf,) --- Hom(Rf,,Rf,)
Let h; be the standard matrix idempotents for the above matrix ring. Since f; = f,, then

End(zX)h, = End(zX)h,, which is impossible since End(zX ) is basic semiperfect.

Definition. Two rings R and R’ are Morita equivalent if there are functors
F:R—-mod — R’ —mod and G:R’—mod — R —mod generating an equivalence
between the categories R —mod and R’ —mod . By [13, Morita IT], there exist invertible

bimodules g P; and , Py such that the functors F and G are naturally isomorphic to the
functors P’ ®p, — and P” @, —, respectively. Furthermore, the functors

P'®p~® P” and P”"®p —®p P’ yield isomorphisms between Pic(R) and Pic(R’)
via [X] [P’ ®r X ® P”] and [Y] > [P” ®¢ Y ®, P’] for [X]€ Pic(R) and

[Y]e Pic(R’). It is clear that Morita equivalence determines an equivalence relation and

that isomorphic rings are Morita equivalent.
Lemma 2.5. Suppose R is semiperfect with complete set of primitive, orthogonal
idempotents {e,...,e,} which has basic subset {f,,..., fm) Lete= Z fi-
i=1

(1) R and eRe are Morita equivalent.

(i1) The ring eRe is basic semiperfect.
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Proof. (i) This is [2, Proposition 27.14].

(i1) This follows from (i) and [2, Corollary 27.8].

We are now ready to define the map relating Pic(R) to Pic(eRe) depicted in the

diagram at the beginning of the chapter.

Lemma 2.6. If R is semiperfect with basic idempotent e, then the map

e(—)e: Pic(R) — Pic(eRe) defined via [X ] [eXe] is a group isomorphism.
Proof. We have that e = f; , where {f;,...,f,,} is a basic subset of some
j=1

complete set of primitive, orthogonal idempotents {e,,...,e,} S R.

Clearly, ReR  R. To show that ReR = R, we need only show that the ¢; € ReR
for then 1, € ReR. Since e is basic, then for each ¢; there is an f; such that Re, = Rf i
as left R-modules. By [2, Exercise 7.2], there exist 7,7’ € R such that ¢, = e,rf,f;’; .
Since f;e= f;,then ¢; = ¢;rf,er’e; € ReR.

It is now clear that Re ®,,, eR = R as R-bimodules, and for a ring R’ and
bimodules ;.Y and zZ., Y®; Re =Ye as (R’,eRe) -bimodules and eR®, Z = eZ as
(eRe, R’) -bimodules.

Since End(eRg) = eRe = End(gRe) and since eR, and jRe are clearly
progenerators for mod — R and R —mod , respectively, then the functor eR ® R~ Re
effects a group isomorphism between Pic(R) and Pic(eRe) via

[X]—[eR®; X ®; Re]=[eXe].
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We are now ready to apply these results to the specific case when we have an

incidence ring of a preordered set over a field.

Notation 2.7. Recall that we let P = (V =V(P),p(P)) be a finite preordered set
and P = (V =V(P),p(P)) be the underlying poset of P. Recall that we also make the
association S = I(P). Letting ¢; € S be the matrix idempotent with 1 in the i,i position
an 0’s elsewhere for each i € V, then {g;li € V'} is a complete set of primitive, orthogonal

idempotents in S. We henceforth make the associations e= Y e, and § = eSe.
ieV

Lemma 2.8. For i, je V, Se, = Se ; if and only if [i]= [j].

f
Proof. (=): If Se; =Se; for somei,jeV, then f e Hom(Se;,Se;) = ¢,Se; and

fle Hom(Se;,Se;) = e;Se; . If [i]# [j], then either (i, j) ¢ p(P) or (j,i) & p(P). If
(i,j) & p(P), then ¢;Se ; =0. Hence, f =0, which contradicts that it is an isomorphism.
Since we have a similar contradiction if (j,i) ¢ p(P), then [i]=[/].

(&) If [i1=[/1, then (i, j),(j,i) € p(P), and so e,

;j-€ji €S . By transitivity,
(k,i) € p(P) if and only if (k,j)e p(P) foreach ke V. Thus, e, Se; =0 if and only if

e, Se; =0 . Hence, Se; and Se; are isomorphic via the map se, r se, j=9%eje; €Se;.

Lemma 2.9,

(1) §is semiperfect with basic idempotent e; hence, eSe is the basic ring for S.

(i) If P is a poset, S is basic semiperfect.



13

Proof. (i) To show § is semiperfect, it suffices to show the ¢,Se; are local rings;

however, this is clear since ¢;Se; = K is a field. By Lemma 2.8, e= Y ¢, is basic.
ieV

(ii) This holds since {¢;li € V} is basic by the antisymmetry of P and Lemma 2.8.

All of the pieces are now in place to construct the diagram mentioned at the

beginning of the chapter.

Theorem 2.10.

(1) The map e(—)e: Pic(S) — Pic(eSe) defined via [X]+> [eXe] is a group
isomorphism.

(i) eSe=I(P) and so we make the association § = eSe = I (P). In particular,
I(P) and I(P) are Morita equivalent.

(iii) The map A p:Out(eSe) — Pic(eSe) as in Notation 2.2 is an isomorphism;
hence, the diagram

Out(S) —22— Pic(s)
J’¢ s ie(—)e
Out(eSe) —>E— Pic(eSe)

commutes where ¢ = A p[e(-)e]A 13"1. Furthermore, A4, is an isomorphism if and only
if ¢ is an isomorphism.

Proof. (i) This follows from Lemmas 2.9 and 2.6.



(ii) For o € I(P), define ¢” € eSe via are=o,, fort,t, eV and
il 5t} i'%j

a*,i,t 7 =0 otherwise. It is easy to verify that (=) I(P)>eSe viaar o' isa ring

isomorphism. The proof is complete since eSe is Morita equivalent to S by Lemma 2.5.

(iii) This follows directly from (ii) and Lemmas 2.5 and 2.4.

14



CHAPTER I
A CHARACTERIZATION OF AUT(I(P))

Recall that P = (V =V(P),p(P)) is a finite preordered set with underlying poset
P=(V =V(P),p(P)). Also recall that fori € V, [i]= {j € VI{, j),(j,i) € p(P)} and
that V is a set of representatives of these classes. We make the associations S = I(P) and

S = eSe = I(P) where e = Y e; is a basic idempotent for S.
ieV

Our goal in this chapter is to characterize Au#(S), the multiplicative group of
automorphisms of S. We embed our field K in S in the natural manner, and we let

Autg (S) denote the subgroup of automorphisms of § which fix K. We extend Coelho’s
description of Auty(S) in [6] as the semidirect product of three of its subgroups to a
characterization of Auz(S) as a four-subgroup semidirect product. This yields a
representation of Our(S) (and Our(S )) as a semidirect product which we use to explore
the connection between Out(S) and Out(S) in Chapter IV and to solve Problems B and C

in Chapter V.

Definition. Let ¢ € Sy, ; that is, o'is a permutation on V. We say ois an

automorphism of P if (i°, j°) € p(P) if and only if (i, j) € p(P). Let Aut(P) denote
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the multiplicative group of automorphisms of P. For ¢ € Aut(P), we define 6:5 = S

by setting (¢; ;)% = € o and extending linearly. That is, for (4; ;) € S , the {i, j}-entry

of (a; j)& is a 11 In [6], Coelho points out that G € Aut,(S).
LA |

Lemma 3.1.

(i) The map (=): Aut(P) — Aut(S) is a group monomorphism.

(ii) For o € Aut(P), ([i])° =[i°] for each ie V.

(iii) Let o denote the composition Aut(P) t; Aut(S) —Y— Out(S) where vis
the canonical projection. Set L = {6 € Aut(P)I([j])° =[j]foreachjeV};ie., L
consists of those o leaving each class invariant. Then L = Ker(ct) .
(iv) If P is a poset, cris injective.
Proof. (i) This follows directly from the comments in [21, pg. 273].
(i) This is clear since for i eV ,
Jjelile G, )).(j,0) e p(P)
& (1°,j°)(j°,i% € p(P)
& j% €[i].
(iii) Choose class representatives {v;,...v,}.

(©): Let 0 € L. It suffices to show that & € Inn(S). Since [x°]=[x] for each

-1 -1 -1 ¢
x€V, then [x° ]1=(xD° =([x°1)° =[x] by (ii). Hence, u(c) = Y Y e , and
i=1 xely;] **
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t
uoH=Y Y e ,-1 areinS. We show that u(c) and u(c™") are inverse elements.
i=1 xe[y;] xx

Notice that (o) and u(c™) have only one non-zero entry, namely a 1, in each row and

1

- -1
each column since x° # y° and x° #y° forx#y. Fori,jeV, [u(o)u(c™);, j

= Y u(0);, u(c™), ; =u(c™)

.Ifi=j,then i® = j°, sothat u(c™),
kev Y

i%,j

=u(c™) o ool =1 If i # j, then i° # j°so that u(o’l)i‘,j =0. Therefore,
J ] *

w(o)u(o™")y =1g. Similarly, w(c™")u(c) =1y, and u(0) is a unit in S with inverse
u(o"l) . Since for A€ §, we have

[u(c™) Au(o));,; = Y u(c™),  [Au(o)];

keV

=[Au(o)]
¢ »J

meV i

— A
~1 -1
iO ,jd'

= (4%,
then (A)° = u(c™!) Au(c) and & € Inn(S).
(2): Let 0 € Ker(@x). Then 6 € Inn(S), énd there is a unit U in S such that
A% =UAU™! for every A in S. We want to show that & leaves each equivalence class

invariant. Let X =[v;] for some 1<i<7,andlet ey = Y e, . Notice that (ex )¢
xeX
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G _ _ c _ o . .
=3 ()= e s o =€, Where X% =(X)° is an equivalence class. It remains to
xeX xeX

show e_, =ey,sincethen X = X.
X
For any equivalence class Y and A, B €S, ey ABey = (eyAey)(eyBey) = ey Aey Be, .

To see this, let i, j € Y so that

[eyABey]; ; = Z[eyA]i,k[BeY]k,j
keV

= 2 ley Al x[Beyl, ; + Y. [ey Al 4 [Bey ], ; -
keY keY

For z¢ Y, either (i,z) (and (j,z)) or (z,i) (and (z,)) ¢ p(P); hence,

key

= Z[eYAeY]i,k [BeY]k,j
keY

=[eyAeyBey]; j
We now show that ey =e_ as follows:
X

€ o =€,0€ ¢ o Silce e is idempotent

_ -1 . — 6 _ -1
= eXaUexU € o SINCE € 5 = (ex)” =UeyU

= -1 ‘ .
= ex,,UeXaexexaU o by the above observation.

Ifey # € o> then €, a¢xe, o =0 which yields the impossibility

-1
O=e ,Ue _eye .U e _.=e _.
XO' X XO' XO' XO'

x°
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(iv) If Pis a poset with V = {v,,...,v,}, then the equivalence classes are the
singleton sets {v;},...,{v,}. By (iii), 0 € Ker(a) implies that v,-“ = v, for each i; thus, o

is trivial.

Set Qut(P) = Aut(P)/ L. By the First Isomorphism Theorem for groups, there is
a monomorphism Out(P) — Out(S) such that Lo > Inn(S)G , and so we identify

Out(P) as a subgroup of Ouz(S) via this monomorphism.

Notation 3.2. Since Coelho’s description of Aut,(S) requires that V
={L2,...,np} and since we wish to extend this to a description of Auz(S), then we make
this stipulation on V throughout the remainder of this paper. We set 2(P) = { & € Aut(S)
|o € Aut(P) such that i° < j° as integers whenever (i, j) € p(P) and i < j as integers}.

As in [6], 2(P) is a subgroup of Aut(S)

Recall that a group G is said to be the semidirect product of subgroups N and H

if Nis normal in G and N N H =1. We use the symbol @ to denote the semidirect
product, and we write G= N@H. Forhe H, h'nh e N for each n € N since N is
normal. We can view # € H as a map from N into N via the action n* = h™'nh , and we
say that H acts on N by conjugation.

If n,n’ € N and h,h’ € H suchthat nh=n’h’ ,then " n=h'n"'e NAnH=1.
Hence, n=n’ and A= Ah’. By induction, we see that we have uniqueness of

representation for a semidirect product of any number of factors.
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The next result connects the subgroup L mentioned in Lemma 3.1 with 2(P).

Proposition 3.3. Aut(P) is the semidirect product of Lby 2= { 0 € Aut(P) |
i° < j° as integers whenever (i, j) € p(P) and i < j as integers}; in particular,
P(P)=2 = Out(P).

Proof. We first show 2 N L =1 by contradiction. Assume o € 2N L such that

o# 1. By Lemma 3.1, o leaves each equivalence class invariant, so that (i,i°) € p(P)

foreach i e V. Since o'# 1, there exists i € V such that either i <i% or i° <i as integers

2
(where the inequality is strict). Since o€ P, there exists either a chain i < i° <i° <...

2 . . . . . . 3
orachain ...<i® <i <i. This is impossible since V is finite; hence, PN L=1.
To show Aut(P)=L-?,let 0 € Aut(P). Suppose P has m equivalence classes,
and et V= {X) 1,21 25000, X145 X005 X025 Xp oy 5005 X 15 X 29000 Xmk,) Such that for each
1<i<m,the vertices x;;,x;,,...,%,;, comprise the i-th equivalence class and

Xy <X;p <...<X;,; asintegers. Foreach 1<i<m,let 1<i,,...,i, <k, such that
s s Ry (]

)° <. < (x

c
(%) <(x ik

™ )° as integers, and define a map 7; such that Xij > Xy,
for each 1< j < k; and all other vertices remain fixed. The 7, € L since they leave the

equivalence classes invariant; hence, 7= []7, € L. To show that 7o € 2, take x, P Xik
ISi<m

such that x; ; < x; , as integers; thatis 1< j <k <k;. Then
(xi,j)w = (xi,j)fia =(x;; j )7 < (xi,ik )7 = (xi,k)w = (X1 ),

sothat Toe Pand 0 = 106e Lo=Ltoc c L?.
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Finally, L is normal since it is the kernel of a group homomorphism.

We now establish the notation necessary to define the third and final subgroup in

Coelho’s decomposition of Autg(S).

Notation 3.4. Let A(P) denote the graph associated with the relation p\p as
defined in [6]. Specifically, the vertices of A(P) are the i € V such that either (i, j) or (j, i)

€ p(P)\p(P) for some j € V, and the edges of A(P) are the unordered pairs {i, j} such
that (i, j) or (j, i) € p(P)\P(P). Let T(P),, denote a spanning tree of the m-th
component of A(P); i.e., T(P),, contains every vertex in the component. Let 5(P) be the
subset of p(P) such that (i, j) € ﬁ(P) if and only if (i, j) € p(P) and {i, j} is an edge in
the union of all the trees of all the components of A(P). Let J(P) denote the vertices of P
that are not in the union of the trees, and let %(P) =p(P)N[J(P)X J(P)].

As in [6], a function g:p(P)— K * is transitive if (i, /)(j,k)® = (i,k)? for all
(i, 7),(J,k) € p(P). Every transitive function g:p(P) — K * gives rise to an
automorphism g* of S by defining (e;;)% "=(i, j)%e, ; and extending linearly. Per [6],
GP)={g" € Aut(S)| g:p(P) = K * is transitive and (i, j)® =1 for all
(i, ))ep(P)u /E)( P) } forms a subgroup of Auty(S) under composition; that is,
g oh” =(gh)" where gh:p(P)—> K * is defined via (i, j)** = (i, /) (i, j)".

We caution the reader that 4(P) depends on the choice of trees; different trees

yield a different &(P).
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Example. Given the strict constraints imposed in the definition of g(P), one
might wonder if 4(P) is almost always trivial. In [6, Example 2], Coelho constructs an

example of a preordered set P for which &4(P) is nontrivial. As we will see in Theorem
45, g(P) = ¢(ﬁ) , SO ¢(ﬁ) is also nontrivial. To see this, note that V(P) = {1,2,4,5}
and p(P) = {(1,1),(1,4),(15),(2,2),(2:4),(2,5),(4:4),(5,5)} , so that V(A(P)) = {1,2,4,5}
and p(A(P))={{14},{15},{2.4},{2,5}}. We let T(P) be a tree for the single component
of A(P) with edges {{1,5},{2,4},{2,5}}. Forany & € K * such that o # 1, the transitive
function g:p(ﬁ) — K* via (14)% =« and (i, j) =1 otherwise is in ¢(13) since

P(P) = {(15),(2:4),(2,5)} and p(P) =@. Thus, in this case, #(P) = G(P)=K*.

Set Outy(S) = Autg(S)/ Inn(S). By [6], Auty(S) = (Inn(S)@4(P))@P(P);
thus, the subgroups 4(P), A(P), and Inn(S) are pairwise disjoint. As a result, the
compositions &(P) —=— Aut(S) — Outy(S) and P(P)—=— Aut(S) = Outy(S)
are monic. We shall identify 4(P) and 2(P) with their images in Out x (S) under these
compositions.

As we mentioned at the beginning of the chapter, our description of Aut(S)

requires one more subgroup. Before giving its definition, we need a suitable description

of the center of S.
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Proposition 3.5. Suppose P has n components B,,...,P,.

() S= A®..DA, where 4, is the incidence ring of P, over K.

(i) The center C of § is isomorphic to K )

(iii) Autg(C)=S,.

Proof. (i) We represent the matrices of S in “block form”. That is, we group the
vertices based upon their inclusion in the components of P and index the matrices of S
beginning with the vertices in V(R), followed by those in V(P,), and ending with those

in V(P,). The matrices are thus of the form

[4] 0 -~ o
0O . 0 :

0o . o0
0 0 [4,

Itis clear that f;Sf; = A; asrings where for 1<i<n, fi= Ye;. So,§

JjeV(R)
= f1519..8f,5f, = A®.. DA, . In subsequent discussion, we identify A; with f,Sf;,
and we may write S = A;/®.. DA, .
(ii) Since ¢;; € S, then for vin C, o;; = ¢;;00.. However, this only holds if ¢ has
non-zero entries only on its diagonal. We show that the entries on the diagonal of ¢

corresponding to vertices in the same component must have the same value. For B € S,

wehave B, jo; ;=3 B,y ;= (o), ;= (0f);; = X 0By ; = ij- S0, if
keV kev

(i, j) € p(P), then we must have «;; = o j,; Finally, it is clear that Cf; = K where the

f; are the central idempotents in (i); hence, C = K™
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(iii) Let 0 € Autyx(C). Consider the central idempotents f; in (i). Since
Cf; = K is indecomposable for each 1<i <n, the f; are primitive in C. We claim the
f; are precisely the primitive central idempotents of C. Viewing C as K™ , we see that
any idempotent of C must have either a 0 or 1 in each coordinate. Since the f;
correspond to the idempotents with 1 in the i-th coordinate and 0’s elsewhere, then any
other idempotent f of C must have a 1 in at least two positions. But, then Cf = K™ for

some m =2, which is not indecomposable.

Since any automorphism must take primitive central idempotents to primitive

central idempotents, there exists 7 € S, such that (f;)° = fl .- Since o fixes K,
(af;)° =af , foralla e K. Itis easy to verify the map o - 7 is a group

monomorphism. Finally, let 7 € S,. Since C= K™ is a free K-module with the f,

forming a free basis for C, then by [2, Exercise 8.11], there exists ¢ € Aut(C) such that

()° = f’ . foreachi. Hence, the map is an isomorphism.

We are now ready to define the final subgroup necessary for our representation of

Aut(S) as a semidirect product.

Notation 3.6. As in Proposition 3.5, § = A;®...©A, where n is the number of

components of P. If & € Aut(K), we can define & € Aur(A,) entrywise; that is,
(a; j)a =(a; ja) where (a;;) € A,. We then have a group monomorphism

Aut(K) — Aut(A,), which yields a group monomorphism []" Aut(K) — Aut(S) via
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(cr;) > (¢;) where @; € Aut(4;). Denote the image of this map by Aut(K)". Since
automorphisms of § take the center C to itself, the restriction map sends Aut(K)" to a

subgroup of Aut(C) which we also denote by Aut(K)".

Proposition 3.7. Aut(C) = Aut(K)"@ Auty(C).
Proof. Let o € Aut(K)" N Auty(C). Viewing C as K™ as in Proposition 3.5,

then k € K corresponds to the element (k,k,...,k) inside C. Since ¢ € Aut(K)", then

o = (0;) where the o; are automorphisms on the coordinates. Since o € Auty(C), then
(k,k,....k) = (k,k,....k)° = (k°',k°2,...,k°"). It follows that the o, are the identity
automorphism on K, and o is the identity on C.

We now show Aut(C) = Aut(K)" - Autg(C). Let 0 € Aut(C). Asin

Proposition 3.5, there exists 7 € S, such that (f;)° = f‘ - Define 6’ € Auty(C) via

(Yaf) =Y q f, . - Weclaim that 8 = 6(c”)™! € Aut(K)". It suffices to show @

1<isn 1Sisn
7’ —] 4 —1

fixes each f; since then @ leaves each Cf; invariant. But, f,° = £°©“) " = £, L =1

Thus, 6 =00’ € Aut(K)" - Autx(C).

We finally show that Aut(K)" is normal in Aut(C). Let B8 =(B;) € Aut(K)" and

o € Auty(C). Since Autg(C)= S, , we may identify o with the associated permutation;

that is, we may assume (xf;)° = xfic forxe K. For (x;)eC,
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GNP = ()P
- (( x,a"l Bi ))o'—l

= (xi(ﬁio. ) ) ’

and so 0o = (B,) € Aut(K)".

We are almost ready to state the main theorem of this chapter which presents

Aut(S) as a semidirect product of the four previously described subgroups. Its proof will

follow from the following two lemmas.

Lemma 3.8. Aut(S) = Aut(K)" - Aut(S) and Aut(K)" A Auty(S)=1.

Proof. To show that Aut(K)" N Auty(S)=1,let o € Aut(K)" N Autg(S). We
know k € K corresponds to the scalar matrix kI € S where I is the identity. But,
kI = (KIy,...,kI,) where the I; are the identity elements of the A;. Since ¢ € Aut(K)"
then o = (0;) where the o; are automorphisms defined entrywise on the A;. Since
O € Auty(S), then (kI kl,,....kl,) = kI = (kI)® = ((kI,)°1,(kI,)°2,...,(kI,)°"). 1t
follows that o is the identity on S.

Let o € Aut(S). Then ol € Aut(C), and by Proposition 3.7, we may write
olc = By where B € Aut(K)" < Aut(C) and y € Aut(C). We extend Sto an

automorphism of § in the obvious manner, and we denote this automorphism also by .

IfxeKcCcS,then
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(1) = () e
= (x)ﬁ_llco"c
= (x)"

=X

which shows B~'c € Auty(S). Thus, 6 € Aut(K)" - Aut,(S).

Lemma 3.9. Suppose P has n components R, B,,..., P, .

(i) Aut(K)" normalizes both Inn(S) and g(P).

(ii) 2(P) normalizes Aut(K)", and if' n=1, then Aut(K)" normalizes 2(P).

Proof. Let B =(B,) € Aut(K)".

(1) Since Inn(S) is a normal subgroup of Aut(S), Aut(K)" normalizes Inn(S).
To show Aut(K)" normalizes Z(P), we let g € g(P) ={ g € Aut(S)| g:p(P)>K*
is transitive and (i, j)¢ =1 for all (i, j) € B(P) U p(P) }. Recall that g” is defined by
setting (e; j)g* =(i, j)%e ; and extending linearly. Since p(P) = p(F)u...Up(P,), then
g =(8,) where g;:p(B,) — K* is a transitive function for P,. Since the
B € Aut(K), we have B,”": K* — K *, and the compositions gk,Bk'I:p(Pk) — K * are
transitive. If (i, j) € p(P), then (i, j) € p(P,) for exactly one k, and we define
(@) = G, )P . Clearly, h:p(P) — K * is transitive. Since (1)’ =1, then
G, j)* =1forall (i, j)e p(P)UD(P) and h' € G(P). Let ¢,;; denote a matrix basis

element belonging to A,. If x € K, then




(xey PeF = (P €ij) £B”
= (PG, p €ij) Ca
= x(i, j)gkﬂk‘l e
= (xek,.j)"* ;

so that Bg"‘B"1 =h'e g(P).
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(ii) Let 6 € P(P). We know o sends components of P to components of P. For

a component F,, we let Pk o denote the component (P,)°. Let a =(a,) € S where the

a, are in A, and write a; =(a,;;). Then 6'[36"1 = (Bk") € Aut(K)" since
sl 5751
@%7 =((a,,;)®

aa—1
.o-_l .o'_1 ))ﬁa

=((a o
k i J

a1
=@ 4 )’

i J
=(@¥)

_ a(Bka) .

Forn=1,let B € Aut(K) and 6 € P(P). Since for ke K, (ke,-j)&B = kﬁea p
i%j

= (ke; j)"3 9, then by extension, 6 = B6 . Consequently, B6B~" =6 € 2(P).




Theorem 3.10. Aut(S) =[(Inn(S)@ 4(P))@ Aut(K)" 0 P(P).

Proof. By [6], Auty(S) = (Inn(S)@4(P))@P(P). By Lemma 3.8,
Aut(K)" N Autg(S) =1 and Aut(S) = Aut(K)" - Aut(S). Since Aut(K)" normalizes
Inn(S)@ 4(P) by Lemma 3.9, then

Aut(S) = Aut(K)" - (Inn(S)@ g(P)) - P(P)
=[(Inn(8$)2 4(P))@ Aut(K)"]-P(P).

Since P(P) normalizes Aut(K)" by Lemma 3.9, and since 2(P) normalizes

Inn(S)@ (P), then P(P) normalizes (Inn(S)@ (P))@ Aut(K)". Thus,

Aut(S) =[(Inn(S)@Z(P))@ Aut(K)"1@P(P).

Corollary 3.11. If P is connected, then Aut(S) = Auty(S)@ Aut(K).
Proof. By Lemma 3.8, Aut(S) = Aut(K)- Auty(S) and Aut(K) N Auty(S)=1.
By Lemma 3.9, Aut(K) normalizes Auty(S) = (Inn(S)@4(P))@P(P) which means

Aut(S) = Aut ¢ (S)0 Aut(K) .

Corollary 3.12. Out(S) =[4(P)@ Aut(K)"J@P(P) ; if P is connected, then

Out(S) = Out(S)@ Aut(K).
Proof. By Lemma 3.9, Aut(K)" normalizes 4(P), so that G(P)@ Aut(K)" is
defined. Define 7:Out(S) — P(P) via Inn(S)g*Bé' > 6. To show 7 is well-defined,

suppose Inn(S)g"Bé = Inn(S)h"8%. Then g"B6 = on"8% for some o € Inn(S). By the



30
uniqueness of representation of the semidirect product, then g* = A", B =6,and 6=17.
It is easy to see that 7 is a group epimorphism.

Consider the sequence g(P)@ Aut(K)" —— Out(S) —=—P(P) — 1 where vis
the canonical map. By

Theorem 3.10, Aut(S) contains the disjoint subgroups Inn(S) and
4(P)o Aut(K)"; hence, vis monic. Clearly, Im(V) c Ker(n). Suppose Inn(S)g*Bé'

€ Ker(r). Then 6 =1, so that Inn(S)g"Bé = Inn(S)g"B = (g * B)* . The sequence
splits since the monomorphism P(P) —=— Autg (S) = Outy(S) is a backmap for
7:Out(S) — P(P).

If n = 1, then by Corollary 3.11, Aut(S) = Aut(S)? Aut(K). We define
7: Out(S) — Aut(K) by Inn(S)g*6B — B. As above, the sequence
1— Out g (S) —=— Out(S)—=> Aut(K) —> 1 is split exact with the monomorphism

Aut(K) —=— Aut(S) — Out(S) abackmap for 7: Out(S) = Aut(K).



CHAPTER 1V
THE CONNECTION BETWEEN OUT (I(P)) AND OUT(1(P))

Recall that P = (V =V(P),p(P)) is a finite preordered set with underlying poset
P =(V =V(P),p(P)). Also recall that for i € V, [i]={j € VI(i, j),(j.i) € p(P)} and
that V is a set of representatives of these classes. We make the associations S = I(P) and

S =eSe=1I(P) where e= Y ¢; is a basic idempotent for S.
ieV

Our goal in the next chapter is to solve Problems B and C. Working to that end,

we explore the connection between Out(S) and Out(eSe). We have the maps

A p:Out(S) = Pic(S) and A p-Out(eSe) — Pic(eSe) as defined in Notation 2.2. Recall
that by Theorem 2.10, A 5 and e(—)e: Pic(S) — Pic(eSe) are group isomorphisms so that
the diagram

Out(S) —2— pic(s)
¢¢S ie(—)e
Out(eSe) —Aﬁ» Pic(eSe)

commutes, where ¢ = A p[e(—)e]A ,—,_1 .
The philosophy of this paper is that with a sufficient understanding of Out(eSe)
and the isomorphisms A 5 and e(—)e, a reasonable description of the elements of Pic(S )

is within grasp as we will see in Chapter V. However, the description is particularly nice
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if Ap is an isomorphism or, equivalently, if ¢ is an isomorphism. Since we would like
to use knowledge about the simpler group Out(eSe) to glean information about the
structure of Pic(S) , then the goal of this chapter is to take a large step in that direction by
discovering necessary and sufficient conditions under which ¢ is an isomorphism.

We begin with the connection between ¢(P) and ¢ (P). Specifically, we address
the connection between f(i") and E(P) and the connection between %(ﬁ) and %(P) .

We start with the following lemma.

Lemma 4.1.

@ P(P)={G.0)li eV} =p(P) NIV xV].

(ii) A(P)=A(P)N[V xV]. Moreover, there is a bijection between the set of
components of A(P) and the set of components of A(P) via C+ C N A(P).

Proof. (i) This is clear since P isa poset and therefore antisymmetric.
(ii) We first show that V(A(P)) = V(A(P) N[V xV1). Note that the proofs of

the inclusions below are similar if we use (j,i) instead of (i, j).

(€): If i e V(A(P)), then there exists j eV such that (i, j) € p(B)\ B(P), so
that (i, j) € p(P)\p(P) and i e V(A(P)N[V xV ).

(@): If i e V(A(P)N[V x V1), then there exists j € V(A(P)) such that
(i, /) € p(P)\P(P). Let meV such that me[j]. Then (i,m) e p(P). However,
(i,m) & p(P) , for otherwise, i = m e[ j], which contradicts that @i, j) ¢ p(P). Thus,

(i,m) € p(P)\p(P) and i e V(A(P)).
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The edges also agree since for i, je V,

(i, jY € p(A(P)) & (i, j) € p(P)\B(P) (or (i) € p(PY\ P(P))
< (i,)) € p(P)\p(P) (or (j,i) € p(P)\ p(P))
& {i, jle p(A(P) N[V xV]).

Clearly, each component of A(P) is contained in some component of A(P).
Suppose C; and C; are distinct components of A(P) contained in some component C of
A(P). Take ie V(C1) ¢ V and je V(C2) < V . Since C is connected, there exist edges
{i,x; . {x;, % },.00,{x;, j} in p(A(P)). Let x; be the unique element in Vm[xf] for
each 1<i<k. Itis then clear that {i,x{},{x{,x;},...,{x;, j} are edgesin
p(A(P)N[V xV]) = p(A(P)) which implies that je V(Cy). This contradicts that C; and

C; are distinct, thereby showing the correspondence.

Recall that the definitions of ¢(P) and ¢(P) depend on the choice of spanning
trees for the components of P and P, respectively. Since we wish to connect 4(P) and

g (P), we make a connection between spanning trees for components of A(?) and

spanning trees for components of A(P).

Definition. Let C be a component of A(P) with associated component C of
A(P). Let T(P) be a spanning tree for C. If T(P) is a spanning tree for a subgraph G of
C containing C such that T(P)=T (P) " A(P) and each edge in T(P) is incident on at

least one vertex in V , we say that T(P) extends T(P) and T(P) lifts to T(P).
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Lemma 4.2. If T(P) is a spanning tree for a component C of A(P), then there
exists a spanning tree T(P) for the corresponding component C of A(P) that extends
T(P) as in the above definition.

Proof. We show that we can extend T(P) to such a spanning tree for any
subgraph of C containing C by inducting on the number of vertices in such a subgraph.

Suppose we have a subgraph G of C such that k is the only vertex in V(G)\V(C).
Let jeV suchthat je[k]. Since k € V(C), then jeV(C) as well. Thus, jeV(C)
and there exists an meV such that {j,m} isin T(ﬁ) - So, either (j,m) (or (m,j))is in
P(PI\P(P) = p(PY\(B(P) N[V xV1). Thus, (j,m) (or (m, j)) € p(P)\P(P). Since
Jj €lk], then (k,m) (or (m,k)) e p(P) \p(P) and {k,m} € p(A(P)). The graph
T(P)u {k,m} formed by adding the vertex k and the edge {k,m} to T(P) contains no
circuits since {k,m} connects a vertex in V to a vertex notin V. Hence, T(P)u {k,m}
is a spanning tree for G that extends 7T(P).

We now suppose that we can extend 7((P) to a spanning tree for any subgraph of

C containing n more vertices than C such that each edge in the tree is incident on at least
one vertex of V , and we further suppose that we have a subgraph G of C such that
VG)\V(C) = {v1,---,V,,V,.1}. By hypothesis, we can extend T(P) to an appropriate
spanning tree for the graph formed by deleting from G the vertex v,,, and any edges
incident on it. This tree in turn can be extended appropriately to include v,,, as

described in the induction basis paragraph.
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Remark. To connect £(P) and &( P), we use Lemma 4.2 to extend trees for
A(P) to trees for A(P). Consequently, our choice of trees for A(P) depends on the
trees chosen for A(P). This, in turn, determines ¢(P). We impose this assumption

throughout the rest of this paper.

Lemma 4.3. If the trees for the components of A(P) extend the trees for the
components of A(ﬁ) , then

) p(P)=p(P)n p(P)

(i) J(P)y=J(P)NV

(iii) B(P)=p(P) p(P)

Proof. (i) Suppose (i, ) € p(P). Then (i, j) € p(P) and {i, j} is an edge in
some tree T(P) for a component of A(P). Since {i, j} is also an edge in the tree T(P)
which extends T(P), then (i, j) € p(P) N p(P).

Conversely, suppose (i, j) € 5( P)N p(P). Then, {i, j} is Va.n edge in some tree
T(P) for a component of A(P). Since this tree extends a tree 7T(P) in A(P) and since
i,jeV,then {i, j} must be an edge in T(P). So, @(i,j)e 5(?) .

(i) Suppose i € J(P). Then i is not a vertex in any tree of A(P). Since iV,
then it is also not a vertex in any tree of A(P). Thus, i € J(P)NV .

Conversely, suppose i € J(P)NV . Then i is not in any tree of A(P). Since the

trees of A(P) contain those of A(P), then i is not in any tree of A(P) and ie J (P).
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(iii) By Lemma 4.1 and (ii),
G, j) € p(P) = B(P) N [J(P)x J(P)]
& (i, /) e PPYNIV XV A (J(P)AV)X(J(P)n V)]

& (i, j) € (P(P) N[J(P) x J(P)])) N[V x V]

& (i, j) € p(P) M p(B).

Before stating the theorem establishing the connection between ¢(P) and &( P),

we need the following lemma which we also use in many of the remaining proofs

presented in this paper.

Lemma 4.4. If 6 € Aut(S) suchthat e® =e, then e(,S)e =515, (€5€)as eSe-

bimodules.

Proof. We make e(,S)e into an eSe-bimodule with right multiplication defined

by ete*ese = (ete)(ese) = e(tes)e and left multiplication ese * ete = (ese)? (ete) = e(s%et)e .
Since this is simply the action of S on .S restricted to eSe, e(,S)e is a well-defined eSe-

bimodule.

We show that e(,; S)e =015, (€5€) as eSe-bimodules by showing the identity map

Le(;8)e > olese (eSe) is an eSe-bimodule isomorphism. Let ete € e(, S)e , esec eSe, and
let e denote the left and right eSe-multiplication in ols, (€5€) . Then ((ete) * (ese))!

= (ete)(ese) = (ete)l e (ese). Also, ((ese)* (ete))l = (ese) (ete) = (ese) ® (ete)l . So,




37

1 is an eSe-bimodule monomorphism. Since both e(;S)e and Olose (eSe) equal eSe as

sets, I is an isomorphism.

Theorem 4.5.

(i) If g:p(P)— K* is a transitive function, then g, 5 : p(P)—> K*isa
transitive function.

(i) If g" € G(P), then gL, = (gl,(5)" € 4(P).

(iii) The map (-)l,5, :4(P) = 4(P) via g" > g’l g, is a group isomorphism
making' the diagram

G(P)—=— Aut(S)—— Out(S)—*E— Pic(S)
lese s Jee (4.6)
G(P)—S— Aut(eSe) ——> Out(eSe) N Pic(eSe)

commute where the v are the canonical projections.

Proof. (i) This follows since p(P) < p(P).

(ii) Suppose g* € 4(P). Then g is transitive and (i, j)¢ =1 for all (i, j)
e p(P)UP(P). Since p(P) = P(P) and p(P) c 5(P) by Lemma 4.3, then
P(PYUD(P) = B(P)UD(P). Thus, (k,m)**® =1 for all (k,m) e 5(F) L D(F) and

(glp(ﬁ) )* € ¢(ﬁ) .
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Since (i,i)® = (i,i)%(i,i)® inside K*, then (i,i)® =1 for all ie V. Thus, € =¢
and (eSe)®" = e%'S€ef” = eS%"e. Since §¢" =5, then (eSe)®” = eSe and
g l,s, € Aut(eSe) = Aut(I(P)).

If eAe= 3, @, e; isanelementof eSe, then
(i.))ep(P)

(8l py)* (8l By)*
(eAe) PP = ¥ oy (e;) &lp(P)
G.))ep(P)

= 2 o; (3, j)g(eij)

(i.))ep(P)

*¥
- 2 ) ai,j(eij)g leSe
@i,j)ep(P)

= (e Ae)g*leSe .

(iii) By (ii), (-)l,g, is well-defined. Since g'l,5, € Aut(eSe), then (gh)’lq,
=(8" oh s, = (8"l,s, )(h'l,5, ), and (=)L, is a group homomorphism. To show that it
is epic, we let &” € ¢(P) and construct g* € ¢(P) such that g*| g, =h" as follows:

For i, j € V, there exist i”, j’ €V such that i’ € [i] and J €lj]. We define
g:p(P) > K * via (i, j)% = (i’, j’)*. Since (i, Dep(P) implies (i, j*) € p(P), g is well-
defined. Notice that (i, j)¥ = (i, j)* for all (i, j) € p(P) and (i, j)¢ =1 if [i] = [j.

We start by showing g is transitive. Let (i, I), (1, ) € p(P), and let i’, j*,1’ € V
such that i’ € [i], j’ €[j], and I €[I]. By the transitivity of , (i, j)¢ = (i’, j*)"

=1V, i) = G.DEW 3.
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To show g' € ¢(P), we must show (i, j) =1 forall (i, ) E(P) u%(P) If
() e%(P), thén [il = [l and (i, j)® =1. If (i, j) € p(P), then (i, j) € p(P) and {i, j}
is an edge in a tree T(P) for some component of A(P). By assumption, T(P) extends the
tree T(P) for the associated component of A(P) as described in Lemma 4.2. By
definition, (i, j)¥ = (i’, j)* where i’,j’ eV , i’ €[i], and J’ €[j1. Since, by
construction, each edge in T(P) is incident on at least one vertex in V , we must consider
the following cases:

Case 1: If i, je V, then {i, j} is an edge in T(P), (i, j) € p(P), and (i, j)®
=@, j)" =1.

Case 2: Suppose i ¢V and jeV. The proof is similar if we suppose i € V and
Jjé V. By the construction of 7(P), we know {i, j} was added to T(P) to “graft in” the
vertex i and {i’, j} is an edge in T(P). Since (i, J) € p(P), then (¥/, j) € p(P) so that
(i, /) € p(P). Hence, (i, )¢ = (", j)" =1.

Since (i, /)¥ = (i, j)" for all (i, j) € p(P), then clearly gl = k" and (-)lg, is
surjective.

By [6, Theorem C], Aut(S) contains the disjoint subgroups &(P) and Inn(S); hence

>

the top row of diagram (4.6) is monic. Since the bottom row is similarly monic and since
e(—)e is monic, then we will have shown (=)l is injective once we show the large

rectangle commutes. However, this will also show the diagram commutes since the right

square commutes by definition.
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The image inside Pic(S) of g* € & (P) under the composition of the top row is
[ g,S]. After applying e(—)e, we have the element [e( g+3)el in Pic(eSe). By part (ii),
e®" =e¢. Hence, e(g+S)e = g ¥lose (eSe) as eSe-bimodules by Lemma 4.4. The diagram

commutes since [, , y(eSe)] is the image of g’ l,s, in Pic(eSe) under the composition of
ede

the bottom row.

We now turn our attention to connecting 2(P) and 2(P).

Definition. Define (=): Aut(P) — Aut(P) via 6 +> & where, forieV , i% is

the unique element in V N[i®]. We show that & € Aut(P) below.

Lemma 4.7. Let 0 € Aut(P).

(i) G € Aut(P).

(i1) (=) is a group homomorphism with kernel L. Recall that L is the set
{o € Aut(P)I([j1)° =[j]foreachje V};i.e., L consists of those o leaving each class
invariant.

Proof. (i) We must show & € S, and (i, j%) € p(P) whenever (i, j) € p(B).
We first show G is a bijection of V.

Suppose i, j € V such that i® = j%. Then [i°]=[j°], so that [i] = [i]. Since

i,j €V , which is a set of equivalence class representatives, then i = j and G is injective.
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Let jeV. Since & € Aut(P), there exists ke V such that k% = j. Let ieV such that
i €[k]. Then [i°]=[k°]=[;], i® = j,and & is a bijection.
For i,jeV, i €[i°] implies that (i%,i%),(i°,i%) € p(P), and j% €[j°]
implies that (j%, j°),(j°,j%) € p(P). Thus, by transitivity,
G, j) € p(P) & (i, j) € p(P)
& (i%,j°) e p(P)
& (i°,j%) e p(P)

& (%,% ep(P).

(ii) Let 0,7 € Aut(P). Then i =m where meV A[i°]. On the other hand,

i’ = j where j eV N[i®], which implies that i% = j* = k where k €V N[j’]. Since

[k]=[j%1=[i"]=[m] and k,meV ,thenk=m. So, i =m=k=i%, and () isa
group homomorphism.

Finally, we have
o € Ker(=) ¢ & = 1in Aut(P)
i’ =iforalieV
o [i%]=[i]forallieV
& [i°]=[ilforallieV

< oel.
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Theorem 4.8. Let the representatives comprising V be chosen such that i € V

implies i < j as integers for all je [i].

(i) (=) induces a monomorphism (=)l g, :P(P) — P(P) via 6 > Ols,=6.
(ii) The group homomorphism @ is given by

A

(Inn(S)g"p&)’s = inn(5)(g"Bb)l.s, = Inn(5)(g 5, Y(Bles, )
for g" € 4(P), B e Aut(K)",and & € P(P).
Proof. (i) Suppose 6 € P(P). Because of the way we chose the elements in V ,
ol; € Aut(P) sothat ol; =& . Hence, & fixes e and 6l,s, € Aut(eSe). For an element

eAe= Y o i
(i,))ep(P)

j of eSe,

A
g _ — : — o
(i,j)ep(P) (i.))ep(P)
so that &l,5, =& .

A
Since o7l,g, = 67l,5, = 6,5, 7,5, for 7 € P(P), we have a group homomorphism.

A

=7,then & = T since (2): Aut(P) > Aut(S) is monic. Since 0,7 € P(P), they

Q>

If
are completely determined by & and 7, respectively. Thus, 0=7 and 6 =7.

(i) Since P also has n components, Aut(K)" embeds inside Aut(S). We
abuse notation slightly and identify Auf(K)" as residing in both Auz(S) and Aut(S).
Since B € Aut(K)" fixes e, it leaves eSe invariant. In particular,

BIeSe € Aut(eSe). Since B merely acts on the entries of the matrices of S and eSe, then



BIeSe € Aut(K)" as contained in Aut(eSe). It is easy to verify that the restriction map
induces a group isomorphism between Aut(K)" < § and Aut(K)" < Aut(eSe).

By Corollary 3.12, Out(S) =[4(P)@ Aut(K)"]o2(P). Furthermore, arbitrary
elements in Out(S) are uniquely of the form Inn(S)g*Bé' where g* e g(P),
B e Aut(K)" ,and 6 € 2(P). By (i), ¢® =e. Since eB =e and since e%" = ¢ by
Theorem 4.5, then e(g*B&S)e = (eSe) as eSe-bimodules by Lemma 4.4. Since

_(g *ﬁ a’)IeSe

g"Ls. » Bls, € Aut(eSe) , then (g"B6),s, = (8"Ls, Y(Bls, )Gl ). By (@), bl,q, =&

Thus,

(Inn(S)g"B&)’S = (Inn(S) g B6) PeONF "
= ([e(g*B&S)e])lﬁ'l

~—1
= ([ poy,,, (€S

= Inn(eSe)(g * Ba')IeSe

A

= Inn(s{)(g*leSe )(BIeSe )(6') .

We are about to accomplish the stated goal for this chapter; that is, we will list
necessary and sufficient conditions under which ¢ is an isomorphism. To do so, we

need one more definition.

Definition. Following Bolla [5], we say S has the Aut-Pic property if

A p:Out(S) = Pic(S) is an isomorphism.
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Corollary 4.9. The following statements are equivalent.

(i) The group monomorphism ¢g:Out(S) — Out(S) is an isomorphism.

(ii) The group monomorphism (=)ig, :P(P) = P(P) is an isomorphism.

(iii) The group homomorphism (=): Aut(P) — Aut(P) is surjective.

(iv) § has the Aut-Pic property.

Proof. (i)<>(ii) Consider the following diagram where the rows are as in
Corollary 3.12.

1 - g(P)@ Aut(K)" = Out(S) — P(P) - 1
JOese 19 Jlese

1— ¢(P)@ Aut(K)" — Out(§) —» P(P) > 1
For ¢'B,8,'B1 € #(P)o Aur(K)", (8 Bg, By)ls. = (8" Bls. (8, By)ls. since
g*BIeSe € Aut(eSe) . Hence, the leftmost vertical map (—)l,g, is a group homomorphism.
Since (<)l5 :G(P) > g (P) is an isomorphism by Theorem 4.5, we have an
isomorphism.
By Theorem 4.8, both the left and right squares clearly commute. Hence, the

entire diagram commutes.
If ¢ is surjective, then (-)l,s, :P(P) — P(P) is surjective by the commutativity
of the right square. Surjectivity of (=)l g, :P(P) — P(P) implies surjectivity of ¢ since

the leftmost (-)l,5, is an isomorphism.
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(ii)=>(iii) Take o € Aut(P). Then & € P(P) so that there exists & € P(P) such

A
that & = 61,5, = @. Since (=): Aut(P) — Aut(§) is monic, then & = ot

(iii)=(ii) Take & € P(P). Then & € Aut(P) so that there exists B € Aut(P)
such that B = . By Proposition 3.3, =70 for some 7 € L and some o € Aut(P)

A
such that 6 € 2(P). Since L= Ker(=),then a=B=%6=6 and 61, =6 =4Q.

(i)e(iv) This is trivial.



CHAPTER V
THE SOLUTION TO PROBLEMS B AND C

Recall that P = (V =V(P), p(P)) is a finite preordered set with underlying poset
P=(V =V(P),p(P)). Recall that fori € V, [i]1= {j e VI(i, j),(j,i) € p(P)}. We
suppose V = {v,,...v,} is the set of minimal representatives of these classes (as integers)

since we wish to apply Theorem 4.8. Also recall that we make the associations S = I(P)

and § = eSe = I(P) where e= Y ¢; is a basic idempotent for S.
ieV

Since our first goal is to explicitly describe the elements of Pic(S), we revisit the

following commutative diagram from Theorem 2.10 where ¢ = A ,[e(—)e]A ﬁ_l .

Out(S) —22— Pic(S)
¢¢ s e
Out(eSe) —)'7’—) Pic(eSe)

By Lemma 2.3, if X is an invertible S-bimodule such that either (X = S or
X =Sy, then there exists ¢ € Aur(S) such that X=,S as S-bimodules. If this is the case
for each invertible S-bimodule, then A, is an isomorphism, which makes ¢ an

isomorphism. Since we are assuming that we have a sufficient understanding of
Out(eSe) , then, in this case, a nice description of Pic(S) is easily within grasp as we see

next.
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Suppose Ap and ¢ are isomorphisms. Then if [X]e Pic(S), there exists
0 € Aut(S) suchthat X=,5. However, 8 can be chosen as a lifting of an automorphism
of §. We know from Corollary 3.12 that each element in Out(§) is uniquely of the
form Inn(S)g"Pé for some g" € ¢(P), Be Aut(K)", and 6 € P(P). Since @ is
epic, then by Theorem 4.8, Inn(8)g"B6 = (Inn(S)g; B161)¢S where g; € 4(P) such

that g{ls, = &", B; € Aut(K)" C Aut(S) such that B,l,;, = B, and &, € P(P) such that

A - . -1
Gils, = (61)=5.. Since ¢™'A,p is an isomorphism, [ .- ~ 81= (Inn(S)g B&)?s *r

€ Pic(S). Hence, if we understand the structure of the elements of Ouz(S), then since

we know how to form the image under ¢ s"l of these elements, we can construct a

representative of each element in Pic(S).

However, not all elements in Pic(S) are necessarily of the form q,S for some ¢

€ Aut(S). Infact, Ap is an isomorphism if and only if (=): Aut(P) — Aut(P) is
surjective by Corollary 4.9. Hence, describing the elements of Pic(S) is interesting when

(=) is not surjective. However, since A F(e(—)e)'] is an isomorphism, there is still hope

to characterize Pic(S) based upon the structure of elements in Ouz(S) .

Definition 5.1. For o € Aut(P), we set

p(o) = {(i, HI((")°, j) € p(P) where i’ €V such that i e[i’] }.
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We define Z(0) to be the subset of the | V|x| V| matrix ring over K such that z € Z()
if and only if z; ; =0 provided (i, j) € p(0). We call Z(o) the S-bimodule induced by

p(0) or the incidence S-bimodule induced by g. We justify this name below.

Lemma 5.2. Let 0 € Aut(P).

(i) Z(o) is an S-bimodule.

(i) Z(0)s = (e, )P ®.. (e, )™ where for 1<i<t, b, =

O

Proof. (i) To show Z(0o) is a left S-module we need only show sz € Z(o) for all
z€Z(o) ands € S. Let z€ Z(0). By linearity, we may consider only the e,, in S such
that (k,l) € p(P). To show e,,z € Z(0), it suffices to show that for i, j € V,
(€x;2);; #0 implies (i, j) € p(0) . However, (e;,2); j =0 unless i =k . So, we may

suppose i =k . Then, (€;,2); ;= Y. (&) mm; =(€x)iuz; =2,;- If 7,; #0, then
meV

(1. j) € p(o) and ((I')°, j) € p(P) where I’eV suchthat [€[l']. Since ¢, =¢,, €S,
then (i,1) € p(P), so that ((i")%,(I")°) € p(P) where i’ €V such that i e [i’]. By
transitivity, ((i")°, j) € p(P). Hence, (i, j) € p(0) , and Z(0) is a left S-module. Z(o)
is similarly a right S-module. Since S and Z(o) are subsets of M, (K) where n = [V(P)I ,

the multiplication is associative and Z(0) is an S-bimodule.

-1
(ii) For i e [(vj)" 1, e(Z(o))=e a‘laS = eij by the definition of Z(o).
;)

So, there are b, = [[(v;)”"'} copies of e, § in Z(0).




We next show that Z(o) € Pic(S) and e(Z(0))e =4 (eSe) as eSe-bimodules.
3y *HaAzne(-)e)! .
This will allow us to identify (Inn(5)g"B&) P e Pic(S) as [,+5 Z(0)] where
1

gl* € 4(P) extends g* and Bl € Aut(K)" < Aut(S) is the obvious extension of B .

Lemma 5.3. Let o € Aut(P).
(i) Z(o) € Pic(S).
(ii) e(Z(o))e =; (eSe) as eSe-bimodules.

Proof. Recall that by Lemma 5.2, Z(0); = (e, )@ ®..®(e, 5)® where for

1<i<t, b =[[(v)° 1

(i) Z(o)y is a finite sum of finitely-generated, projective right S-modules;
therefore, Z(0); is a finitely-generated, projective right S-module. Since each b, > 1,

Z(0); is easily seen to be a generator for mod-S.

Since Pic(S) = {[ 3 Zs 11 Zy is a progenerator for mod-S and End(Zs)=S as

rings}, it remains to show End(Z(0)s) = S . We again rely on our basic set of
idempotents {e,, ,...,e, }. Since Z(0)s = (e, ) ®.. B(e, S)* as right S-modules,
then writing our maps on the left (opposite the scalars), End(Z(c) s) = (h; ;) where

by ; = Hom((e, $)® (e, $)®). But, Hom(e, $)*", (e, $)™) is isomorphic to the

b; X b; matrix ring over Hom(eij »€,,S), which in turn is isomorphic to e, Sevj as

abelian groups. Consequently, Hom((evj S)(bj ) (e, S)@y=M Bixb (e, Sevj ), and
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Mblxbl(eVISeVI) Mblxbz(eVISevz) Mblxbt(e‘,lSth)
M (e, Se,. )

End(Z(o)g)=| ZA2M
My, (e, Sey) My (€, Se,y) - My, (e, Se,,)

Throughout the rest of the proof, we associate End(Z(0)g) with the above
matrix ring where the ring multiplication is standard matrix multiplication. Since
o € Aut(P), then by the definition of the b;, [V|=b;+...+b,.

We will be done if we can show that End(Z(0)) is a structure matrix ring for P

over K since it will then be isomorphic to I(P) =S . We have that e, Sevj =K or

e, Sevj =0 foreach i, j e V. To show we have a structure matrix ring, we label the

vertices in V v,l,v12,...,v‘l"‘l,vé,...,v'z"zl,...,vtl,...,v!v'I such that foreach 1<i<t, v/ =v,
and for each 1< k <|[v;]], vf €[v;]. Since ™! € Aur(P), it induces a permutation on
V= {v1,...,v,} which can be viewed as a permutation on {1,...,#}. We therefore identify

V- with (v, )"_1 for each i. We index the rows and columns of End(Z(c)g) with the
i

vertices in the following order: V! ) v -1 ,...,v"‘_1 W -1 ,...,vl’z_1 T _1seeesV
1° 1° 1° 2© 20 © i

To complete the proof that End(Z(0);) is a structure matrix ring for P over K, it

suffices to show that if a € End(Z(0)s) and a, , #0, then (v'; o ,v’a_1 ) € p(P).
o 1" o1 i
i J

Since ai is a non-zero entry in M ooy (eVi Sevj) , then (v;,v ;) € p(P). This
-1
iO' jO'

implies that (v_a_1 v 04) € p(P) which in turn implies that (v_’; 1 ,v’_ o1 )€ p(P).
i J i J
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(ii) For k eV, e (Z(o) = €. S as right S-modules by the definition of Z(o’) .

Thus, for (a;;) = Y, a; e, € e(Z(0))e, we can define (a; ;)" = 3, @480, € (eSe).
kleV kJev

We define the map (-)":e(Z(0))e— ;(eSe) via (a; P (a; j)’ . We clearly have an
additive group isomorphism since ¢ € Aut(P). We examine its action on the elements

of the form ae,, where a € K and k,l eV to show it is a bimodule homomorphism. Let

s€eSe so that s-ae,; = Y s, ae;; and
ieV

(s-ae;)’ —stkaea,
ieV

2 o1 e by substituting i® for i

d

=y s -1 ae; since o'is a bijection on V
ieV i

= Z(S ) O'aell

ieV

=(s°)ae,q )

=5 (azekcr z) where e is the left eSe-
multiplication in ;(eSe)

=so(ae,;) .

Since aey; - s = z;,las”ekj , then (ae; -s)’ = %as,] (o, = (ae,q )s=(ae,)’s.
JE je
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Lemma 5.4. Let S be aring, 8 € Aut(S), and X be an invertible S-bimodule. Then

oS ® X=,X as S-bimodules.
Proof. The map 5 ® X—¢X via t ® x> x is clearly an S-bimodule

isomorphism.

Definition 5.5. Let Inn(§)¢ € Out(S). By Theorem 3.10, ¢ = aig”B6 for some
aenn(S), g € 4(P), Be Aut(K)",and 6 € P(P). As in Chapter IV, there is
gi € 4(P) suchthat g/, = g" and B1 € Aut(K)" < Aut(S) such that BlleSe = B We

define Z(¢) = .; Z(0) where Z(0) is as in Definition 5.1. If Inn(8)ag” B6
81571

= Inn(S)1h'"6% , there exists o’ € Inn(§) such that a’ag*Bé' =#"5%. By uniqueness of
factorization of the semidirect product, we have g* = h*, B =4,and 6 =7, which

shows Z(g) is well-defined.

Notice that by Lemma 5.4, Lemma 4.4, and Lemma 5.3, we have [eZ(p)e]

= [e(gfﬁl Z(0))e] = [e(gfﬁl Sel®[eZ(o)e] = [S*B (eSe)]®[;(eSe)] = [p(eSe)]. Also
observe that since e(—)e is a group isomorphism, [ X]=[Y] in Pic(S) if and only if

[eXe] =[eYe] in Pic(S). Our structure theorem for elements of Pic(S) appears next.



Theorem 5.6. Let [ X] e Pic(S).

(i) X = Z(¢) for some Inn(S)p € Out(S).

(ii) If X =; S for some £ € Aut(S), then 45 = X = Z(6l,5, ) for some
0 € Aut(S).

(iii) The arithmetic in Pic(S) is defined by [Z(@)]® [Z(x)] =[Z(¢y)]; that is,l
Z(9)® Z(x) = Z(¢x) -

Proof. (i) Since [eXe] € Pic(S), there exists @ € Auz(S) such that [eXe]
= (Inn(§ )(p)}'f’ =[p(eSe)] = [eZ(@)e], which completes the proof by the above
observations.

(ii) Suppose X =, S for some & € Aut(S). By Theorem 3.10, £ = ag'fa’c’i‘ for
some o € Inn(S), g" € 4(P), Be Aut(K)",and & € P(P). Letting 6 = g*B5, then
[X1=[;S]= (Inn(S)E)*? = (Inn(S)0)*? =[,S]. Since A (e(~)e) = 91 5, then,
[eXe]=[e(yS)e]

= (Inn(S)@)*Pe®)

= (Inn(S)0) P

= (Inn(S)6l,5, )*P by Theorem 4.8
=[p,s, (eSe)]

=[eZ(6l,s, )el

so that X = Z(0l,g, ) as S-bimodules by the observations preceding this theorem.
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(iii) This is clear since
[e(Z(9) ® Z(2))e] = [eZ(9)e] ® [eZ(R)e]
=[p(eSe)I O, (eSe)]
= [y (eSe)]

=[eZ(px)e].

This completes the solution of Problem B. We now pursue the solution to

Problem C which we now restate.

Problem C. Determine necessary and sufficient conditions so that Out(S) is

naturally invariant for the Morita equivalence class of S (relative to the collection

of incidence K-algebras).

Let 2 denote the set of finite preordered sets. We define an equivalence relation
=~ onPvia P’~ P”if and only if P’ = P” where P’ and P” are the underlying posets

of P’ and P”,respectively. Foreach P’ e 2, let [P’] be the equivalence class of P’.

Lemma5.7. Let B,P, €?;let S, =I(P,) and S, = I(P,); and let 5, and 5, be
the basic rings for S, and S,, respectively. The following are equivalent:

® [R]=[R)]

i) S, =8,

(iii) S, and §, are Morita equivalent.
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Proof. Throughout this proof, we let ¢;; and f;; denote the standard matrix
basis elements for i, j €V, and k,l€V,. Welet ¢; denote ¢;; and f, denote f,,. By

Lemma2.9, e= Y ¢, and f = ) f, are basic idempotents for S; and S,, respectively.
iV kelh

Hence, we may assume that S} = eS,e and §, = f5,f .

~0 o
()=>(ii) Suppose [R1=[F],so that P, = P, for some 6. Thus, f = 3, f,, , and

ieV]

themap Y @ ;6; 3, a;;f, o, iseasily seen to be a ring isomorphism
G.)ep(R) GpepR) 1

between §, and §,.
(ii)=(i) This is [22, Theorem 1].

(ii)¢=>(iii) This is [2, Proposition 27.14].

Since Morita equivalence determines an equivalence relation on the collection of
incidence algebras over K, we determine necessary and sufficient conditions on P so that

the equivalence class of S has the property that Out(S) is a natural invariant.
Specifically, suppose S and S’ are Morita equivalent via the functors

~®5Q0s:Mod —S — Mod - S’ and Qs ® —:S — Mod — S’ — Mod . We say that
Out(S) and Out(S’) are naturally isomorphic if the functor

s Qs ® -®5 Qs : Pic(S) — Pic(S”) restricts to a group isomorphism

Q®—® Qloy(s) :Out(S) — Out(S") where we identify Out(S) with its image in
Pic(S) under A,. Thatis, Out(S) is naturally isomorphic to Out(S”) if and only if the

vertical maps in the following commutative diagram



Out(S) —2E— Pic(S)
lApee-8ip! | go-8g

Out(S’) —2E— Pic(§")

are isomorphisms. Note that this definition depends on our choice of functors.

Let [S] denote the Morita equivalence class of S. We say Out(S) is a natural

invariant for [S] if Out(S) and Out(S’) are naturally isomorphic for all

§’=I(P)e[S].

Recall that we say S has the Aut-Pic property if A ,:0ut(S) — Pic(S) is an

isomorphism.

Lemma 5.8. The following statements are equivalent.

(1) ¢4 is an isomorphism.

(ii) (=): Aut(P) — Aut(P) is surjective.

(iii) S has the Aut-Pic property.

(iv) Out(S) and Out(S) are naturally isomorphic.

Proof. (i) (ii)<>(iii) This is Corollary 4.9.

()=(iv) This is clear since the isomorphism e(-)e: Pic(S) — Pic(eSe) in the
commutative diagram

Out(S) —22 pic(s)
i¢ S le(—)e
Out(eSe) —E—s Pic(eSe)

is really the functor €S ® — ® Se as in Lemma 2.6 and since o5 = Aple(-)e]d ﬁ'l .
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(iv)=>(iii) Since Out(S) and Out(S) are naturally isomorphic, then A, is an

isomorphism if and only if 4; is as well. But, A ; is an isomorphism by Theorem 2.10.

We close this paper with our solution to Problem C.

Theorem 5.9. The following statements are equivalent.

(1) Out(S) is a natural invariant for [S].

(i) Aur(P)=1.

(iii) Every element in [S] has the Aut-Pic property.

Proof. We first note that Lemma 5.7 permits us to assume that P is the

underlying poset of P’ for any S’ = I(P’) € [S] by relabeling vertices if necessary.

(i)=(ii) For §’=I(P")e[S], we know that §” € [S], and so Ouz(S) and
Out(S’) are naturally isomorphic as are Out(S) and Out(S’). Since the composition of
functors is again a functor, then Out(S’) and Out(S’) are naturally isomorphic. Thus,
by Lemma 5.8, (=): Aut(P’) = Aut(P) is surjective for every S’ €[S].

By contradiction, assume there exists 1# o € Aut( ﬁ) . Then there exist x,y € vV
such that x # y and x° = y. We show there is a preordered set P’ € [P] for which o'is
not in the image of (=): Aut(P’) — Aut(P). Let z be a symbol not in V, let
V=V uU{z}, andlet P(P’) be the transitive closure of p(P)u {(z,z),(z,x),(x,z)v} .

Since P is reflexive, sois P’. P’ is preordered since it is transitive by definition. Since

[x] = {x, z} and since for i € V such that i  [x] we have [i] = {i}, then P is the
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underlying poset of P’. Since |[x]| =2%1= |[y]|, there is no 6 € Aut(P’) such that
6 = o, contradicting the surjectivity of (=): Aut(P’) — Aut(P). Thus, Aut(P)=1.
(ii)=>(iii) If Aut(P)=1, then for any P’ €[P], (=): Aut(P’) — Aut(P) is
surjective. By Lemma 5.8, then each S’ = I(P") € [S] has the Aut-Pic property.
(iii)=() If Ap:0ut(S’) — Pic(S”) is an isomorphism for all S’ =I(P’) [S],

then Out(S) is clearly a natural invariant for [S].

Example. Let P be the preordered set such that V(P) = {v#, v,,v3} and p(P)
= {1, V1), (V1,92), (01, V3), (V2,015 (V3,V,), (V5,3),(v3,V3)} . Since P is such that
V(P) = {v;,v;} and p(P) = {(v;,v;),(",v3),(v3,¥3)} , then Aut(P) is clearly trivial.

Consequently, the incidence algebra

5]

Il
© xR =X
o X =X
N oRX

for the preordered set P has the Aut-Pic property and Out(S) is a natural invariant for the
Morita equivalence class [S].

On the other hand, the incidence algebra

75}
I
S X X
© X =

0
0
K

does not have the Aut-Pic property as shown in [17]. This holds since Aut(P)=Z 2-
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